Conjugate heat and mass transfer of nanofluids over a porous stretching sheet with magnetic effect

Thiagarajan Murugesan, Selvaraj M


Numerical solution has been performed for conjugate heat and mass transfer of  MHD nanofluids over a stretching sheet. The model used for the nanofluid incorporates the effects of buoyancy parameter, the solutal buoyancy parameter and the power - law velocity parameter,  and found to have strong influence on the system. Applying similarity transformations the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations and are solved numerically using Gill Shooting method. Numerical results and presented in the form of graphs. The effects of  magnetic parameter, porosity parameter,  Brownian parameter, thermophoresis parameter, Lewis number, Prandtl number on dimensionless velocity, dimensionless temperature, dimensionless concentration, rate of heat transfer and rate of concentration are discussed thoroughly analyzed.


MHD, Nanofluids, Brownian motion, Thermophoresis, Lewis number, Prandtl number.

Full Text:



Abbas Z, Hayat T (2011). Stagnation slip flow and heat transfer over a non-linear stretching sheet. Number. Meth. Part Differ. Equat. 27:302-314.

Afify AA (2009). Similarity solution in MHD: Effects of thermal diffusion and diffusion thermo on free convective heat and mass transfer over a stretching surface considering suction or injection. Commun. Nonlinear Sci. Numer. Simul. 14:2202-2214.

Aman F, Ishak A (2010). Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet with prescribed surface heat flux. Heat Mass Transf. 46:615-620.

Anwar M. I, (2012) Conjugate effects of heat and mass transfer of nanofluids over a non linear stretching sheet. Int. J. physical science 26: 4081-4092

Bachok N, Ishak A, Pop I (2010). Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int.J. Therm. Sci. 49:1663-1668.

Bachok N, Ishak A, Pop I (2012). Unsteady boundary layer flow and heat transfer of a nanofluid over a permeable stretching/ shrinking sheet. Int. J. Heat Mass Transf. 55:2102-2109.

Bhargava R, Sharma S, Takhar HS, Beg OA, Bhargava P (2007). Numerical solutions for micropolar transport phenomena over a non-linear stretching sheet. Nonlinear Anal. Model. Cont. 12:45-63.

Cebeci T, Bradshaw P (1977). Momentum transfer in boundary layers, Hemisphere Publishing Corporation, New York.

Cebeci T, Bradshaw P (1988). Physical and computational aspects of convective heat transfer, Springer-Verlag, New York.

Chandrasekar M, Suresh S (2009). A review of the mechanisms of heat transport in nanofluids. Heat Transf. Eng. 30:1136-1150.

Choi SUS (1995). Enhancing thermal conductivity of fluids with nanoparticel-developments and applications of non-Newtonian flows. ASME MD and FED, D.A.Siginer,

(H.P.Wang(Eds.).231, 66:99-105.

Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001). Anomalous thermal conductivity enhancement in nano-tube suspensions. Appl. Phys. Lett. 79:2252-2254.

Hayat T, Qasim M (2011). MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int. J. Numer. Methods Fluids 66:963-975.

Khan WA, Pop I (2010). Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53:2477-2483.

Khanafer K, Vafai K, Lightstone M (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int.J. Heat Mass Transf.46:3639-3653.

Kuznetsov AV (2012). Nanofluid bioconvection: interaction of microorganisms oxytactic upswimming nanoparticle distribution, and heating/cooling from below. Theor. Comput. Fluid Dyn. 26:291-310.

[Matin MH, Heirani MR, Nobari, Jahangiri P (2012). Entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet. J.Therm. Sci. Technol. 7:104-119.

Nourazar SS, Matin MH, Simiari M (2011). The HPM applied to MHD nanofluid flow over a horizontal stretching plate. J. Appl.Math.2011:doi:10.1155/2011/876437.

Yu W, France DM, Routbort JL, Choi SUS (2008). Review and comparison of nanofluid thermal conductivity and heat transfer enchancements. Heat Transf.Eng.29:432-460.

E. M. Sparrow and M.K. Chyu, Conjugate forced convection conduction analysis of heat transfer in a plate fin, ASME J. Heat transfer, 104, 204-206 (1982) .

B.Sunden, The effect of prandtl number on conjugate heat transfer from rectangular fins, Int. Commun. Heat Mass Transfer, 12, 225-232 (1985).

A. V. Luikov, Conjugate convective heat transfer problems, Int. J. Heat Mass transfer 17, 257-265 (1974).

M. A. Seddeek and M.S. Abdelmeguid, Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux, Physics Letters A, Volume 348, Issues 3-6, 2 January 2006, Pages 172- 179.

A. V. Luikov. V. A. Alekasahenko and A.A Alekasahenko, Analytical methods of solution of conjugated problems in convective heat transfer, Int . J. Heat Mass Transfer 14, 1047--- 1056 (1971).

Mahmoud E. M. Ouaf, Exact solution of thermal radiation on MHD flow over a stretching porous sheet, Applied Mathematics and Computation Volume 170, Issue 2, 15 November 2005, Pages 1117-1125.


  • There are currently no refbacks.

ISSN: 2332-2160

Impact Factor = 0.465 (2013)